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Several multi-pulse sequences developed within the field of nuclear magnetic resonance (NMR) have
recently been applied to mitigate noise in qubits based on atomic ensembles, semi-conductor quantum
dots, and diamond nitrogen-vacancy centers. We extend these methods to the realm of superconducting
quantum devices, and subject a remarkably long-lived qubit to varying levels of longitudinal and
transverse noise by rotating the qubit’s quantization axis, against which we characterize the baseline
coherence rates Γ1, Γ2, and Γϕ. We evaluate three dynamical decoupling pulse protocols: the Carr-
Purcell (CP); Carr-Purcell-Meiboom-Gill (CPMG); and Uhrig dynamical decoupling (UDD) sequences.
The narrow-band filtering property of the CPMG sequence enables us to sample environmental noise
over a broad frequency range 0.2-20MHz, and we observe a 1/fα-type spectrum which we independently
confirm with a Rabi-spectroscopy approach. We further characterize the environmental noise from 5.4
to 21 GHz, by monitoring the qubit’s relaxation rate.

The device is a persistent-current qubit, an aluminium loop interrupted by four A1-A1Ox-A1
Josephson junctions. When an external magnetic flux Φ threading the loop is close to half a supercon-
ducting flux quantum Φ0/2, the diabatic states correspond to clockwise (counterclockwise) persistent
currents, Ip = 0.18µA with energies ±~ε/2 = ±IpΦb, tunable by the flux bias Φb = Φ − Φ0/2. At
Φb = 0, the degernerate persistent-current states hybridize with a strength ~δ = h × 5.3662 GHz,
where ~ = h/2π and h is Planck’s constant. The corresponding two-level Hamiltonian is

Ĥ = −~
2

[(ε+ δε)σ̂x + (∆ + δ∆)σ̂x] , (1)

which includes noise fluctuation terms δε and δ∆ and σ̂x,z are Pauli operators. The ground (|0〉) and
excited (|1〉) states have frequency splitting ω01 =

√
ε2 + ∆2 and are well isolated owing to the qubit’s

large anharmonicity, ω12/ω01≈5. The environmental noise leading to fluctuations δε (e.g., flux noise)
and δ∆ (e.g., critical current and charge noise) physically couples to the qubit in the ε − ∆ frame.
However, their manifestation as longitudinal noise (dephasing) or transverse noise (energy relaxation)
is tunable by the flux bias Φb and determined, respectively, by their projections δωz′ onto the qubit’s
quantization axis σ̂z′ (which makes an angle θ = arctan (ε/∆) with σ̂z) and δω⊥′ onto the plane
perpendicular to σ̂z′ .

Table 1: Quasi-static noise parameters used in simulations, and coherence times.

Noise parameters σλ/2π ωλir ωλuv/2π Aλ
λ = ε (equiv. Φ noise) 10MHz 1Hz 1MHz (1.7× 10−6)2Φ2

0

λ = ∆ (equiv. I/Ic noise) 0.06MHz 1Hz ¡0.1MHz (4.0× 10−6)2

Coherence times T1 T ∗1 TCPMG
2 TCPMG

2 /T ∗2
Φb = 0mΦ0 12µs 2.5µs 23µs(N = 1) 9

Φb = 0.4mΦ0 12µs 0.27µs 12µs(N = 200) 48

In Ramsey-fringe and Hahn-echo simulations, we describe the Gaussian noise distributions by their
standard deviations, σλ, obtained by integrating the 1/f noises over the bandwidth given by the
experimental protocol (cut-off frequencies ωλir and ωεuv). At ε = 0, the dephasing improvement under a
Hahn echo is greater than the theory would suggest for δ∆1/f noise that extends to high frequencies;
the lower ω∆

uv gives consistency. The equivalent flux and normalized critical-current noise amplitudes,
Aλ, are values derived from the Ramsey and echo data assuming a power law 1/fα with α = 1 and that
all noise in ε and ∆ is flux and critical-current noise, respectively; they are consistent with previously
reported values. Using these parameters in simulations yielded agreement with N -pulse dynamical
decoupling data, consistent with equation. The coherence times are given two bias points dominated
by δ∆ and δε noise, respectively.
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We experimentally demonstrate over two orders of magnitude increase in the coherence time of
nitrogen vacancy centres in diamond by implementing decoupling techniques. We show that for the
relevant noise model, conventional magnetic resonance decoupling techniques with equal pulse spacings,
out-perform, or perform no worse than, those with variable pulse spacings. At short times, we can
extend the coherence time of particular states out from T ∗2 = 2.7µs out to an effective T2 > 340µs.
For preserving arbitrary states we show the experimental importance of using pulse sequences that
through judicious choice of the phase of the pulses compensate the imperfections of individual pulses
for all input states. At longer times, we can arrange revivals in the coherence for all input states at
particular times and we use compensated sequences to enhance these revivals and show a coherence
time of over 1.6ms in ultra-pure abundance 13C diamond.

FIG. 1: (a) NV in diamond lattice with the electron spin (green) coupled to the surrounding nuclear
spins 14/15N (blue) at the defect and 13C (red) in the lattice. The electron ground state level structure
is shown below. (b) An example with eight pulses of the three decoupling sequences used: CPMG;
XY-8 and UDD. CMPG and XY have the same pulse spacings by the phases of the XY-8 pulses
are alternated. The timing of the center of the kth UDD pulses with N total pulses is given by
sin2(πk/(2N + 2)).
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FIG. 2: Short-time coherence decay for states along the pulse rotation axis with (a) CPMG, (b) UDD
and (c) XY sequences. Fits are to the phenomenological form s(t) = 0.5 + A exp(−( t

T2
)k) where

k = log2(number of pulses)+3. Error bars are propagated from photon counting statistics.
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FIG. 3: The effect the robust XY multiple pulse sequences on the revivals at short times (a) and longer
times (b). At short times the periodic revivals of the single spin echo are observed to decay with at
220µsT2 With multiple pulses the revival frequency is reduced proportionally but the T2 is greatly
extended to over 1.6 ms. The envelopes are fit to (s(T ) = 0.5 + A exp(−( t

T2
)3). Since the revivals

only occur at certain multiples of the bare 13C frequency, we observe only at these times to reduce
experimental time.
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